<div dir="ltr">----------------------------------------------------------------------------<br>----------------------------------------------------------------------------<br>MPP 2021: 10th Workshop on Parallel Programming Models<br>co-conducted with IPDPS 2021 on May 21st, 2021, at Portland, Oregon USA.<br><a href="http://www.mpp-conf.org/">http://www.mpp-conf.org/</a><br>----------------------------------------------------------------------------<br><div>----------------------------------------------------------------------------</div><div><br></div><div><span style="color:rgb(80,0,80)"><span style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify">Current
trends in Computer Architecture and Parallel Programming point towards
the importance of accelerating Machine Learning (ML) Algorithms. The
ubiquity of ML, the amount of data treated by ML and the adoption of
much more complex Artificial Neural Networks (mostly Deep Neural
Networks (DNNs)) reinforce the importance of tackling ML problems from a
performance and energy efficiency point-of-views. Therefore, this issue
of the Workshop on Parallel Programming Models (MPP) will mainly focus
on works that provide acceleration and energy efficiency to ML systems,
but as usual will also welcome papers in any topic related to
parallelism/acceleration.</span><br style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"></span><span style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify">MPP
is a workshop designed to explore parallel programming models,
architectures, and runtime systems to enable developers to deal with
these trade-offs. MPP has been held each year since 2012, co-locating
with prestigious conferences such as WSCAD, SBAD-PAC, and IPDPS. It has
attracted industry sponsorship (Maxeler, LG, Microsoft, NGD Systems) and
top-tier keynotes, such as Arvind - MIT, Michael Flynn - Stanford and
Jesus Labarta - BSC. MPP 2021 will be focused on Machine Learning
Performance and has the potential of attracting high-quality papers and
audience for fruitful discussions.</span><div dir="auto" style="color:rgb(80,0,80);font-family:sans-serif;font-size:12.8px"><span><br style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"><span style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify">When
addressing the performance aspect of Machine Learning, there is also
the issue of the amount of data used for training deep-learning models.
In the case of Big Data, the application of in-memory computing (which
was the main topic in MPP 2019) can be essential to reduce the gap
between data and the ML model, in terms of latency. </span><br style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"></span><span style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify">MPP
2021 aims at bringing together researchers interested in presenting
contributions to the evolution of existing models or in proposing novel
ones, considering the trends on Machine Learning, In-Memory Computing
and Security. </span><strong style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify"><span style="font-weight:400">MPP
2021 will be held in conjunction with The 35th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2021), in </span></strong><span style="color:rgb(48,48,48);font-family:verdana,tahoma,arial,sans-serif;font-size:12.16px;text-align:justify">Hilton Portland Downtown, Portland, Oregon, United States, on Friday, May 21.</span></div><div><br></div><div><br></div><div><strong style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">Submission Guidelines</strong><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">MPP invites authors to submit unpublished full (8 pages maximum) or short (4 pages maximum) papers on the subject. S</span><span style="font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify;color:rgb(15,44,57)">ubmitted
manuscripts must be single-spaced double-column pages using 10-point
size font on 8.5x11 inch pages (IEEE conference style), including
figures, tables, and references. The submitted manuscripts should
include author names and affiliations. </span><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">Papers must be submitted by Feb, 18, </span><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">2020</span><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">, in the following url: <a href="https://easychair.org/conferences/?conf=mpp2021" target="_blank">https://easychair.org/conferences/?conf=mpp2021</a></span><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"></span><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"></span><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><strong style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">List of Topics</strong><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify">Topics of interest include (but are not limited to):</span><ul style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify;padding-left:3em;margin:5px 0px;list-style-position:outside"><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Compression of Deep-Learning Models;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Tools for ML Model design;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Hardware specifically designed for Machine Learning;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">In-Memory Computing;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Novel Deep Neural Networks architectures;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Error Detection/Recovery in ML systems;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Robust Neural Networks;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Privacy of data in ML systems;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Robustness of decision making ML systems;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Neural networks inference and training on IoT, Fog, Edge and cloud environments;</li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Machine Learning for Parallel Applications and IoT.</li></ul><span style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"></span><br style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;text-align:justify"><p><font style="font-family:Verdana,Tahoma,Arial,sans-serif;text-align:justify;color:rgb(168,46,46);font-weight:bold" size="2">The
proceedings of MPP 2021 will be distributed at IPDPS 2021 and will be
submitted for inclusion in the IEEE Xplore after the conference.</font></p><p><br><font style="font-family:Verdana,Tahoma,Arial,sans-serif;text-align:justify;color:rgb(168,46,46);font-weight:bold" size="2"><span style="color:rgb(48,48,48);font-size:12.16px;font-weight:400;text-align:left"><strong><font size="4">Important Dates:</font></strong></span></font></p><ul style="color:rgb(48,48,48);font-family:Verdana,Tahoma,Arial,sans-serif;font-size:12.16px;padding-left:3em;margin:5px 0px;list-style-position:outside"><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Paper submission deadline:<strong> </strong><ul style="padding-left:3em;margin:5px 0px;list-style:outside none disc"><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc"><strong></strong>Abstract: <strong><font color="#a82e2e">February 17, 2021</font></strong><br></li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc"><strong></strong>Paper:<strong> </strong><strong><font color="#a82e2e">February 21, 2021</font></strong></li></ul></li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Author notification:<strong> </strong><strong><font color="#a82e2e">March 10</font></strong><strong><font color="#a82e2e">, 2021</font></strong></li><li style="margin:3px 0px 0px;padding-left:5px;list-style:outside none disc">Camera-ready: <font color="#8d2424"><strong></strong><strong></strong></font><strong><font color="#a82e2e">March 15, 2021</font></strong></li></ul></div></div></div>